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A direct numerical simulation (DNS) of turbulent flow in a three-dimensional diffuser
at Re =10 000 (based on bulk velocity and inflow-duct height) was performed with
a massively parallel high-order spectral element method running on up to 32 768
processors. Accurate inflow condition is ensured through unsteady trip forcing and a
long development section. Mean flow results are in good agreement with experimental
data by Cherry et al. (Intl J. Heat Fluid Flow, vol. 29, 2008, pp. 803–811), in particular
the separated region starting from one corner and gradually spreading to the top
expanding diffuser wall. It is found that the corner vortices induced by the secondary
flow in the duct persist into the diffuser, where they give rise to a dominant low-speed
streak, due to a similar mechanism as the ‘lift-up effect’ in transitional shear flows, thus
governing the separation behaviour. Well-resolved simulations of complex turbulent
flows are thus possible even at realistic Reynolds numbers, providing accurate and
detailed information about the flow physics. The available Reynolds stress budgets
provide valuable references for future development of turbulence models.

1. Introduction
In many engineering flows, such as the flow over airplane wings or in

turbomachinery applications, flow separation may lead to degradation of lift, pressure
losses, ‘hot spots’ or even engine failure. On the other hand, maximum performance
is often obtained close to separation, hence the design of flow devices such as pumps,
fans and compressors inevitably leads to situations where flow separation is necessary
to predict, see e.g. the review article by Simpson (1989). In practical situations
these flows are generally turbulent and fully three-dimensional, hence prediction of
highly unsteady, three-dimensional separation is of considerable importance. Often
separation is caused by an adverse pressure gradient and may take place over a
smooth surface (‘pressure-induced’ separation), as opposed to the case where the flow
separates from a sharp geometrical obstacle (‘geometry-induced’ separation). Since,
in the latter case the separation point, in principle, is given by the point of highest
curvature and is thus easy to predict, the former poses most uncertainties because the
point of separation can vary in both time and space.

Rapid developments in computer hardware over the last few years allow predictions
of complex flows to be made by numerical simulations. The most widely used
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approach for complex engineering flows is based on the Reynolds-averaged Navier–
Stokes equations (RANS), where an ensemble average of the Navier–Stokes equations
is solved for. The averaging process gives rise to an unclosed term, which has to be
modelled. Although RANS may be a rather crude way to describe a highly time-
dependent flow phenomenon, it may, in many situations, be sufficient to know the
mean flow characteristics. However, flows experiencing adverse pressure gradients and
separation are very hard to predict, in particular three-dimensional flows, due to rapid
changes in mean flow properties (e.g. Jakirlić et al. 2010). For a more detailed picture
of the flow, unsteadiness needs to be taken into account. The concept of large-eddy
simulation (LES), where the large scales of the flow are resolved and the small scales
are modelled by a subgrid-stress (SGS) model, has in recent years evolved into a
promising tool for flow predictions. The drawback, however, is that a SGS model can
never be universal, and special care has to be taken as new flow cases are being studied.
A numerically more appealing approach and also the most computationally expensive,
where the governing equations are solved without averaging or filtering, is referred
to as direct numerical simulation (DNS). If proper boundary conditions are imposed
and high-enough resolution is used, this approach generally compares very well to
experimental data. Numerical schemes of high order, e.g. spectral methods, with low
amounts of numerical viscosity and dispersion yield particularly satisfactory results.
While traditional spectral methods only work efficiently for simple geometries, the
spectral-element method (SEM) introduced by Patera (1984), is a high-order numerical
method with the ability to accurately simulate fluid flows also in complex geometries.
Thus, SEM has opened the possibility to study, in great detail, fluid phenomena known
to be very sensitive to discretization errors, e.g. flows undergoing pressure-induced
separation (Ohlsson et al. 2010). SEM has successfully been applied to mainly laminar
and transitional flows (e.g. Sherwin & Karniadakis 1995; Tomboulides & Orszag 2000;
Tufo & Fischer 2001) and also fully turbulent flows (Iliescu & Fischer 2003; Wasberg
et al. 2009).

Pressure-induced separation has been considered extensively in two-dimensional
flow configurations, where the mean flow exhibits one homogeneous direction, e.g.
Kaltenbach et al. (1999) who performed LES of a plane asymmetric diffuser with 10◦

opening angle, experimentally also investigated by Buice & Eaton (2000). Herbst,
Schlatter & Henningson (2007) performed LES of a plane asymmetric diffuser
with 8.5◦ opening angle at higher Reynolds numbers. They all reported satisfactory
agreement with the corresponding experimental data concerning the bulk quantities.
Herbst et al. (2007), however, found that employing a recycling technique to specify
unsteady turbulent inflow conditions may not be optimal for spatially developing flows
exhibiting pressure-induced separation, since it might trigger artificial frequencies. Few
examples of LES of fully three-dimensional, turbulent, pressure-induced separated
flows are found in the literature (Schneider, Terzi & Rodi 2009) mainly due to the
fact that one has to rely solely on one homogeneous direction, time, to average
turbulent statistics.

Even though RANS models are getting more sophisticated, many difficulties
remain among which some have already been pointed out. In order to continue the
development, there is a need for clearly-defined benchmark cases and good quality
reference data. Recently, experiments of such a reference case were performed by
Cherry et al. The experiments conducted consisted of two three-dimensional diffusers
with slightly different expansion angles at, for simulation standards, a fairly high yet
realistic Reynolds number of 10 000 based on bulk velocity and height of the inflow
duct. It was found that the flow was extremely sensitive to these slight changes in the
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geometrical set-up. Magnetic resonance velocimetry (MRV) (see Elkins et al. 2003)
was used to collect three-dimensional velocity data. Emphasis was put on defining
a simple truly three-dimensional geometry with well-defined boundary conditions
(walls), inlet conditions (fully developed turbulence) and to avoid any symmetries
leading to long-period stall switches, hence facilitating for simulations to mimic the
real experiment. The three-dimensionality was reasoned to be a more relevant test case
for computational fluid dynamics (CFD), but it would also get rid of the ambiguities
a two-dimensional experiment may suffer from, such as dependence on channel width.
Here, we present a DNS of one of the diffuser cases (‘Diffuser 1’) in Cherry, Elkins
& Eaton (2008) at the same Reynolds number as in the experiments. Focus is on
accuracy, both in terms of discretization and boundary conditions. The motivation
for this is twofold: first, we are aiming at understanding the flow physics involved in
three-dimensional separation through a study of mean flow features together with the
identification of instantaneous flow structures. Second, our data could be used as an
important reference, suitable for further development of turbulence models. A first step
towards these goals must be to validate the data against existing experimental data.
Here, we focus on careful analysis of mean flow results in order to assess the quality
of the simulation data. Mean flow, pressure recovery and turbulent fluctuations are
compared to the experimental data of Cherry et al. (2008). Further, a brief discussion
will be given on some of the new flow physics found in the diffuser.

2. Numerical method and simulation set-up
The incompressible Navier–Stokes equations are solved using a Legendre-

polynomial-based spectral-element method, implemented in the code nek5000,
developed by Fischer et al. (2008). As in the case of the finite-element method
(FEM), the governing equations are cast into weak form and discretized in space by
the Galerkin approximation, where the test and trial spaces are restricted to certain
(and different) velocity and pressure spaces, respectively, following the �N − �N−2

SEM discretization by Maday & Patera (1989). The velocity space is typically a space
of Nth-order Lagrange polynomial interpolants, hN

i (x), based on tensor-product
arrays of Gauss–Lobatto–Legendre (GLL) quadrature points in a local element, Ωe,
e = 1, . . . , E, satisfying hN

i (ξN
j ) = δij . Here, ξN

j ∈ [−1, 1] denotes one of the N +1 GLL

quadrature points and δij is the Kronecker delta. For a single element in �3 the
representation of the velocity vector, u, is

u(xe(r, s, t))|Ωe =

N∑

i=0

N∑

j=0

N∑

k=0

ue
ijkh

N
i (r)hN

j (s)hN
k (t), (2.1)

where xe is the coordinate mapping from the reference element Ω̂ to the local element
Ωe and ue

ijk is the nodal basis coefficient. The tensor-product structure enables the
use of highly optimized matrix–matrix routines (mxm) to solve the final system of
equations (see e.g. Fischer 1997). The nonlinear terms are treated explicitly by second-
order extrapolation (EXT2), whereas the viscous terms are treated implicitly by a
second-order backward differentiation scheme (BDF2) leading to a linear symmetric
Stokes system for the basis coefficient vectors un and pn to be solved at every time
step:

H un − DTpn = B f n, Dun = 0. (2.2)
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Figure 1. Grid of one of the diffuser geometries (‘Diffuser 1’) in Cherry et al. (2008) showing
the development region, diffuser expansion, converging section and outlet.

Here, H =(1/Re)K + (3/2Δt)B is the discrete equivalent of the Helmholtz operator
(−(1/Re)∇2 +3/2Δt). In the right-hand side, f n accounts for the nonlinear terms and
for the cases we have external forcing in the Navier–Stokes equations. To solve the
final problem (see (2.2)), velocity and pressure are decoupled and solved iteratively
using conjugate gradients and GMRES with scalable Jacobi and additive Schwarz
preconditioners, respectively (Fischer 1997). For the latter, fast parallel coarse-grid
solvers scaling to ten thousands of processors are used (Tufo & Fischer 2001).

The computational domain shown in figure 1 is set up in close agreement with
the diffuser geometry in the experiment and consists of the inflow development duct
of almost 63 duct heights, h, (starting at the non-dimensional coordinate x = −62.9),
the diffuser expansion located at x = 0 and the converging section upstream of the
outlet. The corners resulting from the diffuser expansion are smoothly rounded with
a radius of 6.0 in accordance with the experimental set-up. The maximum dimensions
are Lx = 105.4 h, Ly = [h, 4h], Lz = [3.33 h, 4 h]. In the inflow duct, laminar flow
undergoes natural transition by the use of an unsteady trip forcing (see e.g. Schlatter
et al. 2009), which avoids the use of artificial turbulence and eliminates artificial
temporal frequencies which may arise from inflow recycling methods (Herbst et al.
2007). A ‘sponge region’ is added at the end of the contraction in order to smoothly
damp out turbulent fluctuations, thereby eliminating spurious pressure waves. It is
followed by a homogeneous Dirichlet condition for the pressure and a homogeneous
Neumann condition for the velocities. The resolution of approximately 220 million
grid points is obtained by a total of 127 750 local tensor product domains (elements)
with a polynomial order of 11, respectively, resulting in Δz+

max ≈ 11.6, Δy+
max ≈ 13.2

and Δx+
max ≈ 19.5 in the duct centre and the first grid point being located at z+ ≈ 0.074

and y+ ≈ 0.37, respectively. It was verified that the present resolution yields accurate
results in turbulent channel flow simulations. In the diffuser, the grid is linearly
stretched in both directions, but since the mean resolution requirements decreases
with the velocity, which decreases linearly with the area expansion, the resolution in
the entire domain will hence be satisfactory. The simulation was performed on the
Blue Gene/P at ALCF, Argonne National Laboratory (32 768 cores and a total of
8 million core hours) and on the cluster ‘Ekman’ at PDC, Stockholm (2048 cores
and a total of 4 million core hours). Thirteen flow-through times, tub/L = 13, based
on bulk velocity, ub, and diffuser length, L =15 h, were simulated in order to let
the flow settle to an equilibrium state before turbulent statistics were collected over
approximately tub/L = 21 additional flow-through times. The lack of homogeneous
directions together with the fact that the flow showed pronounced instationarity with
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Figure 2. (a) Mean centerplane velocity profile 6h upstream of the diffuser throat,
where u+(y+), u+(z+), log law with κ = 0.41 and B = 5.2, (b) evolution of
Reτ,y = uτ,yh/2ν ( ), Reτ,z = uτ,z3.33h/2ν ( ) in a midplane of constant z and y,
respectively, in the inflow section; solid horizontal lines showing Reτ for a periodic duct and
vertical dashed line location of the selected velocity profile in (a) and (c) stream function of the
time-averaged flow field in a cross-sectional plane 6 h upstream of the diffuser throat showing
the secondary flow in one of the corners. Contour lines of the stream function are spaced
2 × 10−4 units apart. Dashed contour lines, 0.2 ubulk apart, of streamwise velocity as well as
velocity vectors of mean crossflow velocities are superimposed.

fluctuations on a wide range of scales, called for long integration time in order to
average the statistics.

3. Results
3.1. Inflow section

The inflow duct was studied in detail to ensure that a fully developed turbulent flow
is reached at the end of the development section described in § 2. Mean velocity
profiles as a function of y+ and z+, respectively, taken from a middle plane a short
distance upstream of the diffuser opening are shown in figure 2(a). Here, y+ and
z+ are the cross-stream directions in the duct normalized with the respective viscous
length scale in that direction. It can be seen that the ‘law of the wall’ is captured
with good accuracy. Monitoring the streamwise development of the friction Reynolds
number, Reτ , figure 2(b), provides a measure to detect where a fully turbulent flow
is reached. Compared to the value obtained from a periodic duct simulation at the
same Re (indicated by solid horizontal lines), this has occurred at x > −15 as shown
by the dashed vertical line. The secondary flow in the corners of the duct shown in
figure 2(c) also gives a good indication on the development of the flow and, although
weak (a few per cent of ub), is thought to be important for the correct separation
behaviour (Cherry et al. 2008). From the measures listed above, we conclude that
the flow has converged to a statistically stationary state well upstream of the diffuser
throat.
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Figure 3. Crossflow planes of streamwise velocity 2, 5, 8 and 15 h downstream of the diffuser
throat. Left: Computation by nek5000. Right: Experiment by Cherry et al. (2008). Each
streamwise position has its own colour bar on the right. Contour lines are spaced 0.1 ubulk

apart. Thick black lines correspond to the zero velocity contour.

3.2. Diffuser

Turning to the flow in the actual diffuser, a qualitative analysis focusing on identifying
the size, shape and location of the separated region is made by selecting a number of
crossflow planes, shown in figure 3. At every location within the duct until the diffuser
throat at x =0, there is no sign of separation, as expected. As soon as the diffuser
starts to expand, the separation, as pointed out by Cherry et al. (2008), increases
rapidly due to the asymmetry of the geometry in the uppermost right corner, where
the two inclined walls meet. As can be seen in figure 3(a), at x = 2, the agreement
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Figure 4. Crossflow planes of (a) mean and (b) instantaneous streamwise velocity 12 h
downstream of the diffuser throat with superimposed crossflow vectors (scaled so that vectors
in (a) are six times larger than vectors in (b)) showing the corner vortices responsible for
the bump. Thick black lines correspond to the zero streamwise velocity contour. � refer to
(primary) vortex centres.

between the experimental and simulation data is excellent, both considering the
mean flow in general and the separated region in particular. Very good agreement
between the simulation data and the experimental data persists for another three units
downstream until x = 5, shown in figure 3(b), where the separation in the upper right
corner gradually starts to spread and eventually includes the whole top wall of the
diffuser. This spreading is present in both data sets, however, in slightly different ways.
Studying figure 3(c) it is obvious that the separation in the experimental data advances
like a wedge over to the top and uppermost left corner of the diffuser. (Note the
slight shift of the coordinate system in the experimental data). The simulation data,
on the other hand, indicates that at x =6 (not shown) the smaller separation from the
left corner visible in figure 3(b) has grown, although with fixed streamwise magnitude
(∼ −0.025), into a small, stretched localized region in the top of the diffuser. From
here it rapidly continues to grow down into the interior of the diffuser, finally taking
the shape of a small ‘bump’ hanging from the top wall at x = 8, figure 3(c). Here,
the separation fills the entire top of the diffuser, consistent with the experiments.
Even though the bump is not present at x =8 in the experimental data, its presence
can be noticed further downstream at x =15 in figure 3(c), where the bulk of the
separated flow indeed is located to the left. But even so, the origin of the discrepancy
in figure 3(c) is at present unknown. It should be pointed out that the bump is not a
transient effect and an artefact of a too short averaging time. Window averaging of
the data has shown that it is present at all times. This is also confirmed by Schneider
et al. (2009), who performed LES of the same diffuser geometry and Reynolds number
and could see the same extension of the separation bubble on the top expanding wall.
The physical reason for this particular behaviour becomes clear if we superimpose
vectors of crossflow velocity onto a crossflow plane, as shown in figure 4. We see that
a substantial downwash of slow velocity fluid is present within the bump, both in the
mean (figure 4a) and instantaneously (figure 4b), governed by vortical structures in
the upper corners. Tracking the secondary flow in the duct, one realizes that although
weak in magnitude (a few per cent of the streamwise bulk velocity), the vortices
produced by the secondary flow persist into the diffuser, where they give rise to a
low-speed streak, because of a similar mechanism as the ‘lift-up effect’ in transitional
shear flows (Landahl 1980). In the remaining part of the diffuser region, the area
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Figure 5. Mean centerplane velocity 3 〈u〉 + x in the diffuser. Velocity data: nek5000,
� experiment by Cherry et al. (2008) Separated region: nek5000, experiment by
Cherry et al. (2008).

fraction of separated flow (AFSF) in a cross-section is in very good agreement with
the experimental data, including the maximum of 23 % AFSF occurring at x = 15,
figure 3(d), where the straight part of the geometry begins. Between x = 18–20 the
AFSF is 2% larger in the simulation data. After x =20 the separation is reduced to
zero, a result supported by both data sets. A more quantitative comparison is made in
figure 5, where mean velocity profiles are selected in a spanwise midplane. Generally,
good agreement is observed. In particular, the upward movement of the velocity peak
is well captured. The presence of the large separated region on the upper inclined wall
forces the flow upwards, however only slightly, due to the originally high momentum
content in the flow. The size and location of the separated region (here defined as
a region with negative velocity) in a spanwise midplane, seen in figure 5, is in good
agreement with the experimental data, although the previously described extension
of the separation in the simulation data is clearly visible. The streamwise root mean
square (r.m.s), urms/ub, given in figure 6 at the same streamwise locations as the mean
flow in figure 3 shows consistency with the mean flow regarding the flow dynamics
present in the diffuser. In front of the entrance to the diffuser the fluctuations peak
(u+

rms =2.6) close to the walls (z+ = 14.9) very much like in a turbulent channel flow.
The strong character of fully developed wall-bounded turbulence is further confirmed
by the typical streak spacing of Δz+

max ≈ 100 in the near-wall region. Shortly after
the diffuser throat, the fluctuations generally move out from the walls. In particular,
the most dominant fluctuations are found in the shear layer bounding the separation
bubble in the uppermost right corner (figure 6a), reaching a magnitude of 22 % of
the bulk inlet velocity, also confirmed by the experimental data. Further downstream,
at x = 5 (figure 6b), the peak moves downward and increases in magnitude (up to
25 % of the bulk inlet velocity), indicating an intense turbulence activity in this area.
At x = 8 (figure 6c) the turbulent shear layer follows consistently the spreading of the
separation to the top wall of the diffuser, clearly seen in both data sets. The localized
bump present in the simulation data has a corresponding enhanced turbulent activity
around (z, y) = (1.2, 1.6). Here, the agreement with the LES by Schneider et al. (2009)
is again closer than with the experimental findings. At x =15, shown in figure 6(d),
both data sets suggest the turbulence to be more homogeneously spread over the
cross-sectional area, with a peak situated in the interior of the diffuser of around
17 % of the bulk inlet velocity. The typical turbulent scales are rapidly increasing
in size as soon as the separated flow in the upper right corner has become visible.
In the duct, there are approximately ten adjacent streaks in the z-direction close
to the wall. This persists until the diffuser throat and approximately 2 h further
downstream (x =2), where this number is suddenly halved to approximately five
streaks. Consequently, the typical scales are approximately twice as large in this
region compared to the scales in the duct. Another 2 h further downstream, at x =4,
the previously attached boundary layers are dispersed and the flow is to a larger
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Figure 6. Crossflow planes of streamwise velocity fluctuations, urms/ub 100, 2, 5, 8 and 15h
downstream of the diffuser throat. Left: Computation by nek5000. Right: Experiment by
Cherry et al. (2008). Each streamwise position has its own colour bar on the right. Contour
lines are spaced 2 urms/ub 100 apart. Thick black lines correspond to the zero streamwise
velocity contour.

extent mixed over the entire cross-section. It should be pointed out that the flow
experiences a highly unsteady behaviour, characteristic of separated flow in general
and enhanced by the asymmetry in the geometry in particular. Time history data
shows that the fast core of the flow oscillates in one direction (i.e. y) for some time
and then suddenly changes into another direction (i.e. z). More specific, the shedding
of a low-velocity structure was detected in the bottom of the diffuser around x =14
with a Strouhal number of St = f h/ub = 1/50, i.e. at a comparably low frequency.
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Figure 7. Pressure recovery coefficient relative to the pressure on the bottom wall of the
diffuser inlet, where L = 15 h denotes the length of the diffuser. nek5000, • experiment
by Cherry et al. (2009).

The separated flow was found to be laminar most of the time, as opposed to the
highly fluctuating flow further away from the walls, which will contribute to a highly
intermittent flow in this region, both in time and space. Finally, we also compare
to the pressure data (Cherry, Elkins & Eaton 2009) conducted for ‘Diffuser 1’ along
the flat wall of the diffuser opposite of the top expanding wall by means of static
pressure taps. The dimensionless pressure recovery coefficient, Cp = (p − pref )/ρu2

b is
plotted against the streamwise coordinate xh/L in figure 7, where pref is the reference
pressure at x =0.045, L = 15 h is the length of the diffuser, ρ is the fluid density and
ub is the bulk velocity at the inlet of the diffuser. A constant of −0.02 is added to
the experimental Cp in order to facilitate the comparison. The agreement is excellent,
including the rapid rise, the gradual reduction in the pressure gradient and the linear
part after x = 0.7. This result gives important information about the quality of the
computed pressure field, which plays an important role in the Reynolds stress budgets.
The effective pressure rise over the diffuser computed as ΔCp =Cp(xh/L = 1.48) −
Cp(xh/L = 0.045) is ΔCsim

p = 0.569 for the simulation and ΔCexp
p =0.587 for the

experiment.

4. Conclusions
Diffuser flows are numerically hard to treat in general, not only due to their

sensitivity to discretization errors, but also as a consequence of the slow, separated
flow the need for long (and expensive) time integration to obtain converged
turbulent statistics. Nevertheless, their importance in technical applications cannot be
underestimated. Three-dimensional diffusers, in particular, are even more challenging
due to the lack of statistically homogeneous directions, and hence the possibility to
average over these. In this paper, we study one of the diffuser geometries (‘Diffuser 1’)
experimentally investigated by Cherry et al. (2008). In the present set-up, special
care was taken to make the present computation free from artificial inflow condition
through an unsteady trip forcing and a long development section. Taking the above
difficulties into account and adding the general resolution requirements of a flow at
Re = 10 000, the mean flow results presented here show very good agreement with
experimental studies. The complex flow and the realistic Reynolds number proves
that numerical simulations might qualify as a cheaper alternative to experiments.
A slight discrepancy in the separated region was found, supported by findings of
Schneider et al. (2009) and a physical explanation involving the secondary flow was
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given. As the quality of the data is now assessed, the complex flow physics in the
three-dimensional separation will be further investigated. In addition, as turbulence
modelling in separated flows continues to be an active area of research, this data
will be available as a valuable reference database, where the Reynolds stress budgets
might be of particular interest.
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